Vol. 1 (2025)
Original Article

Effect of body size on an age-structured food chain with birth pulses in pests

Published 2025-04-07

Keywords

  • Biological control,
  • impulsive system,
  • functional responses,
  • predation,
  • body size

Abstract

An ecological challenge is to understand the effects of body size reduction in response to climate change, a phenomenon that could significantly disrupt agroecological systems. However, the effects of these changes in individual traits and trophic interactions on the structure of food webs in such systems have not yet been fully explored. In the Southern Hemisphere, the socioeconomic and cultural importance of agriculture justifies the need to investigate these systems. In this study, the selected host plant is watermelon (Citrullus lanatus), the pest corresponds to the cotton aphid (Aphis gossypii), and the potential biological control agent is the Chilean predatory mite (Eriopis chilensis). To theoretically understand the structure of this food chain, we developed a three-level model that includes biological control, two pests, and the host plant. The model combines a continuous dynamic system with discrete pulses representing births and the introduction of new individuals of the control agent. Holling’s type II functional responses, reproduction and mortality rates, and carrying capacity dependent on the body size of the species are integrated into the model. Additionally, a computational algorithm is presented, which enables the simulation of the behaviour of the agroecological system. This proposal offers a theoretical tool to improve the understanding of species interactions and to anticipate dynamics that could be useful in designing agroecological management and control strategies.

Downloads

Download data is not yet available.

References

  1. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., and Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology and Evolution, 19:535–544. DOI: 10.1016/j.tree.2004.07.021.
  2. Ayoade, A. A., Thota, S., and Shah, Z. (2024). Theoretical framework for biological control of pest: a mathematical modeling approach. Environmental Science and Pollution Research, 31:54453–54462. DOI: 10.1007/s11356-02434788-4.
  3. Bambach, N. E., Rhoades, A. M., Hatchett, B. J., Jones, A. D., Ullrich, P. A., and Zarzycki, C. M. (2022). Projecting climate change in South America using variable-resolution community Earth system model: An application to Chile. International Journal of Climatology, 42:2514–2542. DOI: 10.1002/joc.7379.
  4. Basset, A. and Angelis, D. L. (2007). Body size mediated coexistence of consumers competing for resources in space. Oikos, 116:1363–1377. DOI: 10.1111/j.00301299.2007.15702.x.
  5. Bayram, Y. and Bayhan, E. (2016). The effect of some watermelon varieties on the biology of Aphis gossypii Glover (Hemiptera: Aphididae). Plant Protection Bulletin, 56:295– 307. DOI: 10.16955/bkb.92708.
  6. Bernardino, G. V. D. S., Mesquita, V. P., Bobrowiec, P. E. D., Iannuzzi, L., Salomao, R. P., and Cornelius, C. (2024). Habitat loss reduces abundance and body size of forest-dwelling dung beetles in an Amazonian urban landscape. Urban Ecosystems, 27:1175–1190. DOI: 10.1007/s11252024-01520-6.
  7. Bevacqua, D., Coppola, A., and Casagrandi, R. (2024). An ecological model to analyze and control the dynamics of the leaf-miner pest Tuta absoluta on tomato (Solanum lycopersicum). Entomologia Generalis, 44:451–458. DOI: 10.1127/entomologia/2024/2316.
  8. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85:1771–1789. DOI: 10.1890/03-9000.
  9. Campillay-Llanos, W., Córdova-Lepe, F. D., and Moreno- Gómez, F. N. (2022). Coexistence, energy, and trophic cascade in a three-level food chain integrating body sizes. Frontiers in Ecology and Evolution, 10. DOI:10.3389/fevo.2022.821176.
  10. Campillay-Llanos, W., González-Colville, P., Ortega-Farías, S., and López-Flores, M. M. (2024a). Historical trends and future scenario projection of maximum summer temperatures in the southern hemisphere: central-southern zone of Chile. IDESIA, 42:43–54. DOI: 10.4067/s071834292024000300043.
  11. Campillay-Llanos, W., Lopez-Flores, M. M., Ortega-Farías, S., and Díaz, G. A. (2024b). Theoretical approach to community structure: body size, density and energy. Revista Brasileira de Ensino de Física, 46. DOI: 10.1590/18069126-RBEF-2023-0364.
  12. Campillay-Llanos, W., Ortega-Farías, S., Gonzalez-Colville, P., Díaz, G. A., López-Flores, M. M., and López-Olivari, R. (2025). Modeling the Effects of Extreme Temperatures on the Infection Rate of Botrytis cinerea Using Historical Climate Data (1951–2023) of Central Chile. Agronomy, 15:608. DOI: 10.3390/agronomy15030608.
  13. Campillay-Llanos, W., Pinto, M., and Osorio, C. (2024c). Body size modulates demographic patterns of top predators and their native and invasive prey: A biomathematical approach. Ecología Austral, 34:159–170. DOI: 10.25260/EA.24.34.1.0.2231.
  14. Campillay-Llanos, W., Saldaña-Núñez, V., Córdova-Lepe, F., and Moreno-Gómez, F. N. (2021). Fish catch management strategies: Evaluating the interplay between body size and global warming. Natural Resource Modeling, 34. DOI: 10.1111/nrm.12331.
  15. Chambers, L. E., Barnard, P., Poloczanska, E. S., Hobday, A. J., Keatley, M. R., Allsopp, N., and Underhill, L. G. (2017). Southern hemisphere biodiversity and global change: data gaps and strategies. Austral Ecology, 42:20– 30. DOI: 10.1111/aec.12391.
  16. Crawford L., H. and Abarca R., P. (2017). Manual de manejo agronómico para cultivo de Sandia (Citrullus lanatus (Thunb.) Matsum. et Nakai.). INIA - Instituto de Investigaciones Agropecuarias, Rengo, Chile.
  17. del Pozo, A., Brunel-Saldias, N., Engler, A., Ortega-Farias, S., Acevedo-Opazo, C., Lobos, G. A., and Molina -Montenegro, M. A. (2019). Climate change impacts and adaptation strategies of agriculture in Mediterraneanclimate regions (MCRs). Sustainability, 11:2769. DOI: 10.3390/su11102769.
  18. Giaconi M., V. and Escaff G., M. (2001). Cultivo de hortalizas. Santiago, Chile.
  19. Gibert, J. P., Dell, A. I., DeLong, J. P., and Pawar, S. (2015). Scaling-up trait variation from individuals to ecosystems. London, United Kingdom.
  20. González, P. and Pinto, M. (1996). Asymptotic behavior of impulsive differential equations. The Rocky Mountain Journal of Mathematics, 26:165–173.
  21. González-Tokman, D., Córdoba-Aguilar, A., Dáttilo, W., Lira-Noriega, A., Sánchez-Guillén, R. A., and Villalobos, F. (2020). Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biological Reviews, 95:802–821. DOI: 10.1111/brv.12588.
  22. Hafeez, N. (2024). Phytochemical and biological studies of Cucurbitaceae: A Mini-review. Phytopharmacology Research Journal, 3:13–23.
  23. Hakl, R., Pinto, M., Tkachenko, V., and Trofimchuk, S. (2017). Almost periodic evolution systems with impulse action at state-dependent moments. Journal of Mathematical Analysis and Applications, 446:1030–1045. DOI: 10.1016/j.jmaa.2016.09.024.
  24. Hill, G. M., Kawahara, A. Y., Daniels, J. C., Bateman, C. C., and Scheffers, B. R. (2021). Climate change effects on animal ecology: butterflies and moths as a case study. Biological Reviews, 96:2113–2126. DOI: 10.1111/brv.12746.
  25. Kalinkat, G., Schneider, F. D., Digel, C., Guill, C., Rall, B. C., and Brose, U. (2013). Body masses, functional responses and predator-prey stability. Ecology Letters, 16:1126–1134. DOI: 10.1111/ele.12147.
  26. Lent, C. S. (2022). Learning to program with MATLAB: Building GUI tools. John Wiley & Sons, Hoboken NJ, USA.
  27. Li, H., Li, B., Lövei, G. L., Kring, T. J., and Obrycki, J. J. (2021). Interactions among native and non-native predatory Coccinellidae influence biological control and biodiversity. Annals of the Entomological Society of America, 114:119– 136. DOI: 10.1093/aesa/saaa047.
  28. Ma, Z., Yang, J., and Jiang, G. (2010). Impulsive control in a stage structure population model with birth pulses. Applied Mathematics and Computation, 217:3453–3460. DOI: 10.1016/j.amc.2010.09.012.
  29. Martins, G. (2024). The Metabolic Theory of Ecology as a Mechanistic Approach. Cham, Switzerland.
  30. Núñez, M. N., Solman, S. A., and Cabre, M. F. (2009). Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century. Climate Dynamics, 32:1081–1095. DOI: 10.1007/s00382-008-0449-8.
  31. Saavedra, S., Arroyo, J. I., Deng, J., Marquet, P. A., and Kempes, C. P. (2023). Integrating metabolic scaling and coexistence theories. bioRxiv. DOI: 10.1101/2023.02.28.530509.
  32. Salma, A. (2006). Las Cucurbitáceas. Importancia económica,bioquímica y medicinal. Bogotá, Colombia.
  33. Sheridan, J. A. and Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1:401–406. DOI: 10.1038/nclimate1259.
  34. Sibly, R. M., Brown, J. H., and Kodric-Brown, A. (2012). Metabolic ecology: a scaling approach. Chichester, United Kingdom.
  35. Subedi, B., Poudel, A., and Aryal, S. (2023). The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. Journal of Agriculture and Food Research, 14. DOI: 10.1016/j.jafr.2023.100733.
  36. Tang, S. and Chen, L. (2002). Density-dependent birth rate, birth pulses and their population dynamic consequences. Journal of Mathematical Biology, 44:185–199. DOI: 10.1007/s002850100121.
  37. Vasseur, D. A. and McCann, K. S. (2005). A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. The American Naturalist, 166:184–198. DOI: 10.1086/431285.
  38. Velten, K., Schmidt, D. M., and Kahlen, K. (2009). Mathematical modeling and simulation: introduction for scientists and engineers. John Wiley & Sons, Hoboken, NJ, USA.
  39. Verberk, W. C., Atkinson, D., Hoefnagel, K. N., Hirst, A. G., Horne, C. R., and Siepel, H. (2021). Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biological Reviews, 96:247–268. DOI: 10.1111/brv.12653.
  40. Vitasse, Y., Ursenbacher, S., Klein, G., Bohnenstengel, T., Chittaro, Y., Delestrade, A., and Lenoir, J. (2021). Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biological Reviews, 96:1816–1835. DOI: 10.1111/brv.12727.
  41. Weitz, J. S. and Levin, S. A. (2006). Size and scaling of predator-prey dynamics. Ecology Letters, 9:548–557. DOI: 10.1111/j.1461-0248.2006.00900.x.
  42. Wouwer, A. V., Saucez, P., and Vilas, C. (2014). Simulation of ODE/PDE models with MATLAB, Octave and Scilab.Springer, Cham, Switzerland.
  43. Yodzis, P. and Innes, S. (1992). Body size and consumerresource dynamics. The American Naturalist, 139:1151– 1175. DOI: 10.1086/285380.