Vol. 1 (2025)
Artículos Originales

Genetic structure and responses of flax (Linum usitatissimum L)germplasm to phytotoxic aluminum (Al3+) in acid soils of southernChile

Edith Severo Cid
Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco
Biografía
Branko Contreras-Beltrán
Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco
Biografía
Braulio Soto-Cerda
Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco
Biografía

Publicado 2025-12-24

DOI: https://doi.org/10.7770/jonraf-v1-art15

Palabras clave

  • Flax,
  • Population structure,
  • Aluminum toxicity,
  • Acid soil,
  • Root traits,
  • Aluminum tolerance
  • ...Más
    Menos

Resumen

Flax (Linum usitatissimun L) is a versatile crop valued for its oil and functional compounds However, the presence ofphytotoxic aluminum (Al3+) in acid soil, limits its productivity, specifically in southern Chile where acid soils of the Andisoltype abound. The objective of this study was to characterize the genetic structure of 40 flax accessions using 2,200 singlenucleotide polymorphism (SNP) markers using STRUCTURE and Neighbor Joining (NJ) algorithms, and to analyze theirshoot and root phenotypic responses to aluminum toxicity in an acid soil to identify tolerant genotypes that could be usedin flax breeding. STRUCTURE and NJ methods grouped the 40 genotypes into three groups. Significant treatment andgenotypic effects were observed for total root length (TRL), root area (RA), apical root length (ARL) and root volume (RV)(p < 0.05). STRUCTURE groups 1 and 2 (G1 and G2) outperformed group 3 (G3) for RA (control and Al3+), ARL (Al3+), TRL(control), RV (control and Al3+), and relative root area. Fisher exact test for root traits under control and Al conditions enabledthe identification of genotypes differentially responding to stress and non-stress treatments. Pearson correlation analysisindicated that root traits either under Al3+ stress or limed soil conditions exhibited moderate to high associations amongthem (r= 032 – 096), suggesting shared root development regulation. Hierarchical and multivariate analyses of root traits andtheir relative growth indices identified the Al3+ tolerant genotypes G188 (fiber type), G87 (fiber type), and G401 (oil type),which showed superior relative total root length (RTRL), relative apical root length (RARL), and relative root area (RRA). Thepresent study revealed unexplored genetic variation in response to Al3+ stress and provide potential parental lines to improveflax adaptation to acidic soil conditions as those prevailing in southern Chile.

Descargas

Los datos de descarga todavía no están disponibles.

Referencias

  1. Berti M, Fischer S, Wilckens R, Hevia F, Felicitas H, Burton J c2010) Adaptation and genotype x environment interaction of flaxseed (Linum usitatissimum L) genotypes in South Central Chile. Chil J Agric Res. 70 (3): 345-356.
  2. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 23:2633-2635 https://doiorg/101093/ bioinformatics/btm308.
  3. Cakmak I, W Horst (1991) Effect of aluminium on lipid peroxidation superoxide dismutase catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant. 83 (3): 463–468.
  4. Chauhan D, Yadav V, Vaculík M, Gassmann W, Pike S, Arif N, Singh V, Deshmukh R, Sahi S, Tripathi D (2021) Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Crit Rev Biotechnol. (41) 5: 715-730.
  5. CIREN (2003) Descripciones de suelos materiales y símbolos Estudio agrológico X Región Tomo II. 412 p. Centro de Información de Recursos Naturales Santiago Chile.
  6. Delhaize E, Ryan P, Hebb D, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. PNAS Nexus. 101: 15249 – 15254.
  7. Diederichsen A, Kusters P, Kessler D, Bainas Z, Gugel R (2013) Assembling a core collection from the flax world collection maintained by Plant Gene Resources of Canada. Genet Resour Crop Evol. 60: 1479-1485.
  8. Dmitriev A, Krasnov G, Rozhmina T, Kishlyan N, Zyablitsin A, Sadritdinova A, Snezhkina A, Fedorova M, Yurkevich O, Muravenko O, Bolsheva N, Kudryavtseva A, Melnikova N (2016) Glutathione S-transferases and UDPglycosyltransferases are involved in response to aluminum stress in flax. Front Plant Sci. 16 (3): 139-146.
  9. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 14:2611-2620. https:// doi:101111/j1365-294X2005 02553x.
  10. FAOSTAT (2023) Datos de cultivos. Disponible en https:// wwwfaoorg/faostat Leído el 13 de abril de 2023.
  11. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Feng Ma (2007) An aluminumactivated citrate transporter in barley. Plant Cell Physiol. 48 (8): 1081–1091.
  12. GRINGLOBAL (2022a) Plant gene resources of Canada. Available at https://pgrc-rpcagrgcca/gringlobal/ accessiondetail?id=100053. Accessed 20 October 2022.
  13. GRINGLOBAL (2022b) Plant gene resources of Canada. Available at https://pgrc-rpcagrgcca/gringlobal/ accessiondetail?id=89905. Accessed 20 October 2022.
  14. He H, Li Y, He L (2019) Aluminum toxicity and tolerance in Solanaceae plants. S Afric J Bot. 123: 23-29.
  15. Heidarabadi M, Ghanati F, Fujiwara T (2011) Interaction between boron and aluminum and their effects on phenolic metabolism of Linum usitatissimum L. roots. Plant Physiol Biochem. 49: 1377–1383.
  16. Hoque A, Fiedler J, Rahman M (2020) Genetic diversity analysis of a flax (Linum usitatissimum L.) global collection. BMC Genomics. 21: 557.
  17. Jiang N, Ren J, Zu Y, Sun W, Ma X, Bi Y (2022) Aluminum exposure effect on cell wall pectin methyl esterification in alfalfa with different aluminum tolerance. Pol J Environ Stud. 31: 4157-4166.
  18. Kochian L, Piñeros M, Hoekenga O (2005) The physiology genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil. 274: 175–195.
  19. Kochian L, Piñeros M, Liu J, Magalhaes J (2015) Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. A review. Annu Rev Plant Biol. 66: 571–598.
  20. Kopittke P, Moore K, Lombi E, Gianoncelli A, Ferguson B, Blamey F, Menzies N, Nicholson T, McKenna B, Wang P, Gresshoff P, Kourousias G, Webb R, Green K, Tollenaere A (2015) Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol. 167: 1402-1411.
  21. Krasnov G, Dmitriev A, Zyablitsin A, Rozhmina T, Zhuchenko A, Kezimana P, Snezhkina A, Fedorova M, Novakovskiy R, Pushkova E, Povkhova L, Bolsheva N, Kudryavtseva A, Melnikova N (2019) Aluminum responsive genes in flax (Linum usitatissimum L.). BioMed Res Int. 2019: 5023125.
  22. Luzio WL, Casanova MP (2020) Avances en el conocimiento de los suelos de Chile. 2da ed 460 p. Universidad de Chile Facultad de Ciencias Agronómicas Departamento de Ingeniería de Suelos Santiago Chile. Luzio W (2010) Suelos de Chile. 360 p. Universidad de Chile Facultad de Ciencias Agronómicas Departamento de Ingeniería de Suelos Santiago Chile.
  23. Newell MA, Cook D, Tinker NA, Jannink JL (2010) Population structure and linkage disequilibrium in oat (Avena sativa L): implications for genome-wide association studies. Theor Appl Genet. 122:623–632.
  24. Palmer A, Baker A, Muench S (2016) The varied functions of aluminium-activated malate transporters–much more than aluminium resistance. Biochem Soc Trans. 44: 856– 862.
  25. Pereira J (2018) Initial root length in wheat is highly correlated with acid soil tolerance in the field. Sci Agríc. 75: 79-83.
  26. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet. 67:170-181. https://doiorg/101086/302959.
  27. Ramesh S, Kamran M, Sullivan W, Chirkova L, Okamoto M, Degryse F, McLaughlin M, Gilliham M, Tyerman S (2018) Aluminum-activated malate transporters can facilitate GABA transport. Plant Cell. 30: 1147–1164.
  28. Ryan P, Ditomaso J, Kochian L (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J of Exp Bot. 44: 437-446.
  29. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn S, Ryan P, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J. 37: 645-653.
  30. Sertse D, You FM, Ravichandrana S, Cloutier S (2019) The genetic structure of flax illustrates environmental and anthropogenic selections that gave rise to its ecogeographical adaptation. Mol Phylogenet Evol. 137:22-32.
  31. Singh K, Mridula D, Rehal J, Barnwal P (2011) Flaxseed: A potential source of food feed and fiber. Crit Rev Food Sci Nutr. 51: 210-222.
  32. Sivaguru M, Horst W (1998) The distal part of the transition zone is the most aluminium sensitive apical root zone of Zea mays L. Plant Physiol. 116: 155–163.
  33. Soto-Cerda BJ, Cloutier S, Quian R, Gajardo HA, Olivos M, You FM (2018) Genome-wide association analysis of mucilage and hull content in flax (Linum usitatissimum L.) seeds. Int J Mol Sci. 19:2870. https://doiorg/103390/ ijms19102870.
  34. Sun P, Tian Q, Chen J, Zhang W (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot. 61: 347-356.
  35. Tripathi R, Agrawal S (2013) Evaluation of changes in lipid peroxidation ROS production surface structures secondary metabolites and yield of linseed (Linum usitatissimum L.) under individual and combined stress of ultraviolet-B and ozone using open top chambers. Indian J Biochem Biophys. 50: 318–25.
  36. Uysal H, Fu YB, Kurt O, Peterson GW, Diederichsen A, Kusters P (2010) Genetic diversity of cultivated flax (Linum usitatissimum L.) and its wild progenitor pale flax (Linum bienne Mill.) as revealed by ISSR markers. Genet Resour Crop Evol. 57:1109–1119.
  37. VSN International (2015) Genstat for Windows 18th Edition VSNI Hemel Hempstead England UK. Available at: https// wwwvsnicouk/software/genstat. Leído el 12 de mayo de 2022.
  38. Wickham H (2016) Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319- 24277-4.
  39. Xu F, Li G, Jin C, Liu W, Zhang S, Zhang Y, Lin X (2012) Aluminum-induced changes in reactive oxygen species accumulation lipid peroxidation and antioxidant capacity in wheat root tips. Biol Plant. 56: 89–96.
  40. Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 125: 199–208.
  41. Zhang X, Long Y, Huang J, Xia J (2019) Molecular mechanisms for coping with Al toxicity in plants: A review. Int J Mol Sci. 20: 1-27.
  42. Zyablitsin A, Dmitriev A, Krasnov G, Bolsheva N, Rozhmina T, Muravenko O, Fedorova M, Snezhkina A, Kudryavtseva A, Melnikova N (2018) CAX3 gene is involved in flax response to high soil acidity and aluminum exposure. Mol Biol. 52: 595-600.